A comparison of preconditioners for incompressible Navier-Stokes solvers
نویسندگان
چکیده
We consider solution methods for large systems of linear equations that arise from the finite element discretization of the incompressible Navier–Stokes equations. These systems are of the so-called saddle point type, which means that there is a large block of zeros on the main diagonal. To solve these types of systems efficiently, several block preconditioners have been published. These types of preconditioners require adaptation of standard finite element packages. The alternative is to apply a standard ILU preconditioner in combination with a suitable renumbering of unknowns. We introduce a reordering technique for the degrees of freedom that makes the application of ILU relatively fast. We compare the performance of this technique with some block preconditioners. The performance appears to depend on grid size, Reynolds number and quality of the mesh. For medium-sized problems, which are of practical interest, we show that the reordering technique is competitive with the block preconditioners. Its simple implementation makes it worthwhile to implement it in the standard finite element method software. Copyright q 2007 John Wiley & Sons, Ltd.
منابع مشابه
Preconditioners for the Steady Incompressible Navier-Stokes Problem
In this paper we discuss preconditioners for the incompressible Navier-Stokes equations. In combination with Krylov subspace methods, they give a fast convergence for the solution of the Navier -Stokes equations. With the help of numerical experiments, we report some new findings regarding the convergence of these preconditioners. Besides that, a renumbering scheme for direct solvers and ILU pr...
متن کاملNumerical Solution Techniques for the Steady Incompressible Navier-Stokes Problem
In this paper we discuss some recently published preconditioners for the incompressible Navier-Stokes equations. In combination with Krylov subspace methods, they give a fast convergence for the solution of the Navier -Stokes equations. With the help of numerical experiments, we report some new findings regarding the convergence of these preconditioners. Besides that, a renumbering scheme for d...
متن کاملEVIEW A RTICLE Preconditioners for Incompressible Navier - Stokes Solvers †
In this paper we give an overview of the present state of fast solvers for the solution of the incompressible Navier-Stokes equations discretized by the finite element method and linearized by Newton or Picard’s method. It is shown that block preconditioners form an excellent approach for the solution, however if the grids are not to fine preconditioning with a Saddle point ILU matrix (SILU) ma...
متن کاملA Comparative Study of Block Preconditioners for Incompressible Flow Problems
Problem statement: We consider the numerical solvers for the linearized Navier-Stokes problem. Both the Stokes problem and Oseen problems are considered. Approach: We used the Mark and Cell (MAC) discretization method to discretize the Navier-Stokes equations. We used preconditioned Krylov subspace methods to solve the resulting linear systems. Results: Numerical experimental results are perfor...
متن کاملAn Incompressible Navier-Stokes Equations Solver on the GPU Using CUDA Master of Science Thesis in Complex Adaptive Systems
Graphics Processing Units (GPUs) have emerged as highly capable computational accelerators for scientific and engineering applications. Many reports claim orders of magnitude of speedup compared to traditional Central Processing Units (CPUs), and the interest for GPU computation is high in the computational world. In this thesis, the capability of using GPUs to accelerate the full computational...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008